RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1999 Volume 63, Issue 4, Pages 3–18 (Mi im249)

Differentiable operators of nearly best approximation

P. V. Al'brecht

Moscow Aviation Institute

Abstract: Let $X$ be a normed linear space, let $Y\subset X$ be a finite-dimensional subspace, and let $\varepsilon>0$. We define a multiplicative $\varepsilon$-selection $M\colon X\to Y$ to be a map such that
$$ \forall\,x\in X \qquad \|Mx-x\|\leqslant \inf\{\|x-y\|\colon y\in Y\}(1+\varepsilon). $$

We prove that there is an $\varepsilon$-selection $M$ whose smoothness coincides with that of the norm in $X$. We show that, generally speaking, it is impossible to find an $\varepsilon$-selection of greater smoothness in $L^p[0,1]$.

MSC: 90C48, 90C25, 54C60, 46E30, 41A30, 41A25

Received: 09.01.1998

DOI: 10.4213/im249


 English version:
Izvestiya: Mathematics, 1999, 63:4, 631–647

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024