RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1999 Volume 63, Issue 4, Pages 19–36 (Mi im250)

Embedding lattices in lattices of varieties of groups

M. I. Anokhin

M. V. Lomonosov Moscow State University

Abstract: If $\mathfrak V$ is a variety of groups and $\mathfrak U$ is a subvariety, then the symbol $\langle\mathfrak U,\mathfrak V\rangle$ denotes the complete lattice of varieties $\mathfrak X$ such that $\mathfrak U\subseteq \mathfrak X\subseteq \mathfrak V$. Let $\Lambda=\mathrm C\prod_{n=1}^\infty\Lambda_n$, where $\Lambda_n$ is the lattice of subspaces of the $n$-dimensional vector space over the field of two elements, and let $\mathrm C\prod$ be the Cartesian product operation. A non-empty subset $K$ of a complete lattice $M$ is called a complete sublattice of $M$ if $\sup_MX\in K$ and $\inf_MX\in K$ for any non-empty $X\subseteq K$.
We prove that $\Lambda$ is isomorphic to a complete sublattice of $\langle\mathfrak A_2^4, \mathfrak A_2^5\rangle$. On the other hand, it is obvious that $\langle\mathfrak U,\mathfrak A_2\mathfrak U\rangle$ is isomorphic to a complete sublattice of $\Lambda$ for any locally finite variety $\mathfrak U$. We deduce criteria for the existence of an isomorphism onto a (complete) sublattice of $\langle\mathfrak U,\mathfrak A_2\mathfrak U\rangle$ for some locally finite variety $\mathfrak U$. We also prove that there is a sublattice $\langle\mathfrak A_2^4,\mathfrak A_2^5\rangle$ generated by four elements and containing an infinite chain.

MSC: 20E10, 20F16, 08B15, 20F05

Received: 09.06.1997

DOI: 10.4213/im250


 English version:
Izvestiya: Mathematics, 1999, 63:4, 649–665

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025