RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1999 Volume 63, Issue 4, Pages 207–223 (Mi im253)

This article is cited in 5 papers

Topological completeness of spaces of measures

V. V. Fedorchuk

M. V. Lomonosov Moscow State University

Abstract: We prove that the functors $P_R$ and $P_\tau$ of Radon and $\tau$-additive probability measures, respectively, preserve neither the real-completeness nor the Dieudonne completeness of Tychonoff spaces. We suggest conditions under which Martin's axiom implies that $P_\tau$ preserves real-complete spaces, absolute extensors, and Tychonoff bundles. These last results cannot be obtained without additional set-theoretic assumptions.

MSC: 54H99, 60B05, 28C15

Received: 25.12.1997

DOI: 10.4213/im253


 English version:
Izvestiya: Mathematics, 1999, 63:4, 827–843

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025