RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1967 Volume 31, Issue 4, Pages 799–834 (Mi im2566)

This article is cited in 7 papers

Representations of finite groups over number rings

P. M. Gudivok


Abstract: Let $R'$ be the ring of integers of a finite extension $F'$ of the field of rational $p$-adic numbers $Q_p$, and let $G$ be a finite group. All groups $G$ and fields $F'$ are found such that the number of indecomposable representations of $G$ over $R'$ is finite. In addition, we investigate the problem of complete reducibility of a matrix $R'$-representation of an abelian $p$-group, all of whose irreducible components are $F'$-equivalent.

UDC: 519.4

MSC: 20C11, 20Kxx, 20F18, 11R04, 20C12

Received: 19.04.1966


 English version:
Mathematics of the USSR-Izvestiya, 1967, 1:4, 773–805

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025