RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2008 Volume 72, Issue 3, Pages 69–88 (Mi im2605)

This article is cited in 1 paper

An extension of the (1,2)-symplectic property for $f$-structures on flag manifolds

N. Cohena, S. Pinzonb

a Instituto de Matematica, Estatistica e Computacao Cientifica
b Universidad Industrial de Santander

Abstract: The (1,1)-symplectic property for $f$-structures on a complex Riemannian manifold $M$ is a natural extension of the (1,2)-symplectic property for almost-complex structures on $M$, and arises in the analysis of complex harmonic maps with values in $M$. A characterization of this property in combinatorial terms is known only for almost-complex structures or when $M$ is the classical flag manifold $\mathbb{F}(n)$. In this paper, we remove these restrictions by considering an intersection graph defined in terms of the corresponding root system. We prove that the $f$-structure is (1,1)-symplectic exactly when the intersection graph is locally transitive. Our intersection graph construction may be helpful in characterizing many other Kähler-like properties on complex flag manifolds.

UDC: 514.763.42

MSC: 53C55, 22F30, 17B45, 05C20

Received: 29.12.2006

DOI: 10.4213/im2605


 English version:
Izvestiya: Mathematics, 2008, 72:3, 479–496

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024