RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2009 Volume 73, Issue 1, Pages 31–48 (Mi im2612)

Homogeneous partial differential equations for superpositions of indeterminate functions of several variables

K. Asai

University of Aizu

Abstract: We determine essentially all partial differential equations satisfied by superpositions of tree type and of a further special type. These equations represent necessary and sufficient conditions for an analytic function to be locally expressible as an analytic superposition of the type indicated. The representability of a real analytic function by a superposition of this type is independent of whether that superposition involves real-analytic functions or $C^{\rho}$-functions, where the constant $\rho$ is determined by the structure of the superposition. We also prove that the function $u$ defined by $u^n=xu^a+yu^b+zu^c+1$ is generally non-representable in any real (resp. complex) domain as $f\bigl(g(x,y),h(y,z)\bigr)$ with twice differentiable $f$ and differentiable $g$, $h$ (resp. analytic $f$, $g$, $h$).

Keywords: superposition, essentially all PDEs, rooted trees, Hilbert's 13th problem, minors.

UDC: 517.518.28+517.95

MSC: 12H05, 32A05, 32A10, 32A38, 35E15, 35E20, 35N05

Received: 05.02.2007

DOI: 10.4213/im2612


 English version:
Izvestiya: Mathematics, 2009, 73:1, 31–46

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024