RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1999 Volume 63, Issue 6, Pages 29–82 (Mi im268)

This article is cited in 5 papers

Some remarks on the $\ell$-adic regulator. III

L. V. Kuz'min

Russian Research Centre "Kurchatov Institute"

Abstract: Let $K$ be a finite extension of the field of rational $\ell$-adic numbers $\mathbb Q_\ell$, and let $K_\infty$ be the cyclotomic $\mathbb Z_\ell$-extension of $K$. For an intermediate field $K_n$ in $K_\infty/K$, let $U(K_n)$ be the group of units of $K_n$ and put $U(K_n)^\perp=\{x\in K_n\mid\operatorname{Sp}_{K_n/\mathbb Q_\ell}(x\log u)\in {\mathbb Z}_\ell$ for all $u\in U(K_n)\}$, where $\log\colon U(K_n)\to K_n$ is the $\ell$-adic logarithm. We give an approximate characterization of $U(K_n)^\perp$. The proofs are based on the use of Laurent series with integer coefficients and infinite principal part.

MSC: 11S85, 11R23, 11R37

Received: 13.01.1998

DOI: 10.4213/im268


 English version:
Izvestiya: Mathematics, 1999, 63:6, 1089–1138

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024