RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2008 Volume 72, Issue 6, Pages 105–132 (Mi im2685)

This article is cited in 4 papers

Boundaries of braid groups and the Markov–Ivanovsky normal form

A. M. Vershik, A. V. Malyutin

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: We describe random walk boundaries (in particular, the Poisson–Furstenberg, or PF-, boundary) for a large family of groups in terms of the hyperbolic boundary of a special normal free subgroup. We prove that almost all the trajectories of a random walk (with respect to an arbitrary non-degenerate measure on the group) converge to points of that boundary. This yields the stability (in the sense of [6]) of the so-called Markov–Ivanovsky normal form [12] for braids.

UDC: 514.1, 519.216, 515.162.8, 514.15

MSC: 60J50, 20F36, 37A35, 37A50

Received: 21.06.2007
Revised: 17.11.2007

DOI: 10.4213/im2685


 English version:
Izvestiya: Mathematics, 2008, 72:6, 1161–1186

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024