RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2010 Volume 74, Issue 3, Pages 169–224 (Mi im2689)

Extremal problems for integrals of non-negative functions

A. I. Stepanets, A. L. Shidlich

Institute of Mathematics, Ukrainian National Academy of Sciences

Abstract: We study the numbers $e_\sigma(f)$ that characterize the best approximation of the integrals of functions in $L_p(A,d\mu)$, $p>0$, by integrals of rank $\sigma$. We find exact values and orders as $\sigma\to\infty$ for the least upper bounds of these numbers on the classes of functions representable as products of a fixed non-negative function and functions in the unit ball $U_p(A)$ of $L_p(A,d\mu)$. The numbers $e_\sigma(\,\cdot\,)$ are used to obtain necessary and sufficient conditions for an arbitrary function in $L_p(A,d\mu)$ to lie in $L_s(A,d\mu)$, $0<p,s<\infty$. We discuss applications of the results obtained to the approximation of measurable functions (given by convolutions with summable kernels) by entire functions of exponential type.

Keywords: best approximations of integrals by integrals of finite rank, absolute convergence of integrals.

UDC: 517.5

MSC: 41A50

Received: 28.06.2007
Revised: 23.03.2009

DOI: 10.4213/im2689


 English version:
Izvestiya: Mathematics, 2010, 74:3, 607–660

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024