RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1999 Volume 63, Issue 6, Pages 147–166 (Mi im270)

This article is cited in 7 papers

Isometric immersions and embeddings of locally Euclidean metrics in $\mathbb R^2$

I. Kh. Sabitov

M. V. Lomonosov Moscow State University

Abstract: This paper deals with the problem of isometric immersions and embeddings of two-dimensional locally Euclidean metrics in the Euclidean plane. We find explicit formulae for the immersions of metrics defined on a simply connected domain and a number of sufficient conditions for the existence of isometric embeddings. In the case when the domain is multiply connected we find necessary conditions for the existence of isometric immersions and classify the cases when the metric admits no isometric immersion in the Euclidean plane.

MSC: 53A05, 53B20

Received: 20.10.1998

DOI: 10.4213/im270


 English version:
Izvestiya: Mathematics, 1999, 63:6, 1203–1220

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024