RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2010 Volume 74, Issue 1, Pages 175–196 (Mi im2744)

This article is cited in 14 papers

On the standard conjecture of Lefschetz type for complex projective threefolds

S. G. Tankeev

Vladimir State University

Abstract: Under certain natural assumptions on cohomology of a complex projective fibred threefold with semi-stable degenerations, we prove the Grothendieck standard conjecture $B(X)$ of Lefschetz type on the algebraicity of the operators $\Lambda$ and $*$. In particular, $B(X)$ is true if at least one of the following conditions holds: 1) the generic fibre of some $1$-parameter holomorphic family $\pi\colon X\to C$ is birationally equivalent to either a ruled surface, an Enriques surface, or a K3-surface, 2) all the fibres of $\pi$ are smooth surfaces of Kodaira dimension $\varkappa\le0$.

Keywords: standard conjecture of Lefschetz type.

UDC: 512.6

MSC: 14C25, 14F25, 14J30

Received: 01.11.2007

DOI: 10.4213/im2744


 English version:
Izvestiya: Mathematics, 2010, 74:1, 167–187

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024