RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2009 Volume 73, Issue 5, Pages 105–170 (Mi im2749)

This article is cited in 3 papers

Some remarks on the $\ell$-adic regulator. V. Growth of the $\ell$-adic regulator in the cyclotomic $Z_\ell$-extension of an algebraic number field

L. V. Kuz'min

Russian Research Centre "Kurchatov Institute"

Abstract: For an algebraic number field $k$ that is either a field of CM-type (real or imaginary) or a field having Abelian completions at all places over $\ell$ and satisfying the feeble conjecture on the $\ell$-adic regulator [1] and its cyclotomic $\mathbb{Z}_\ell$-extension $k_\infty$, we obtain formulae that represent for all sufficiently large $n$ the $\ell$-adic exponent of the number $R_\ell(k_{n+1})/R_\ell(k_n)$, where $R_\ell(k_n)$ is the $\ell$-adic regulator in the sense of [1]. We discuss the meaning of the Iwasawa invariants occurring in these formulae and the resemblance between our results and the Brauer–Siegel theorem.

Keywords: Iwasawa theory, cyclotomic $Z_\ell$-extensions, $\ell$-adic regulator, Iwasawa invariants.

UDC: 519.4

MSC: 11S85, 11S25

Received: 27.11.2007

DOI: 10.4213/im2749


 English version:
Izvestiya: Mathematics, 2009, 73:5, 959–1021

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024