RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2010 Volume 74, Issue 1, Pages 135–158 (Mi im2757)

This article is cited in 1 paper

Widths of some classes of convex functions and bodies

V. N. Konovalova, V. E. Maiorovb

a Institute of Mathematics, Ukrainian National Academy of Sciences
b Department of Mathematics, Technion – Israel Institute of Technology, Haifa

Abstract: We consider classes of uniformly bounded convex functions defined on convex compact bodies in $\mathbb{R}^d$ and satisfying a Lipschitz condition and establish the exact orders of their Kolmogorov, entropy, and pseudo-dimension widths in the $L_1$-metric. We also introduce the notions of pseudo-dimension and pseudo-dimension widths for classes of sets and determine the exact orders of the entropy and pseudo-dimension widths of some classes of convex bodies in $\mathbb{R}^d$ relative to the pseudo-metric defined as the $d$-dimensional Lebesgue volume of the symmetric difference of two sets. We also find the exact orders of the entropy and pseudo-dimension widths of the corresponding classes of characteristic functions in $L_p$-spaces, $1\le p\le\infty$.

Keywords: convex function, entropy, pseudo-dimension.

UDC: 517.5

MSC: 05B40, 41A10, 41A25, 41A45, 41A46, 42A61, 46A35, 60A05, 60C05, 60F15, 68T05, 68U05

Received: 10.01.2008
Revised: 29.12.2008

DOI: 10.4213/im2757


 English version:
Izvestiya: Mathematics, 2010, 74:1, 127–150

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024