RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2009 Volume 73, Issue 6, Pages 3–28 (Mi im2758)

This article is cited in 17 papers

Embeddings of model subspaces of the Hardy space: compactness and Schatten–von Neumann ideals

A. D. Baranov

Saint-Petersburg State University

Abstract: We study properties of the embedding operators of model subspaces $K^p_{\Theta}$ (defined by inner functions) in the Hardy space $H^p$ (coinvariant subspaces of the shift operator). We find a criterion for the embedding of $K^p_{\Theta}$ in $L^p(\mu)$ to be compact similar to the Volberg–Treil theorem on bounded embeddings, and give a positive answer to a question of Cima and Matheson. The proof is based on Bernstein-type inequalities for functions in $K^p_{\Theta}$. We investigate measures $\mu$ such that the embedding operator belongs to some Schatten–von Neumann ideal.

Keywords: Hardy space, inner function, embedding theorem, Carleson measure.

UDC: 517.53

MSC: 30D55, 47A45, 47B37

Received: 10.01.2008

DOI: 10.4213/im2758


 English version:
Izvestiya: Mathematics, 2009, 73:6, 1077–1100

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024