RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2009 Volume 73, Issue 3, Pages 5–22 (Mi im2759)

This article is cited in 1 paper

Projective embeddings of homogeneous spaces with small boundary

I. V. Arzhantsev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We study open equivariant projective embeddings of homogeneous spaces such that the complement of the open orbit has codimension at least 2. We establish a criterion for the existence of such an embedding, prove that the set of isomorphism classes of such embeddings is finite, and give a construction of the embeddings in terms of Geometric Invariant Theory. A generalization of Cox's construction and the theory of bunched rings enable us to describe in combinatorial terms the basic geometric properties of embeddings with small boundary.

Keywords: algebraic group, homogeneous space, epimorphic subgroup, Cox ring.

UDC: 512.745.2

MSC: 14L24, 14L30, 14M17

Received: 11.01.2008
Revised: 31.08.2008

DOI: 10.4213/im2759


 English version:
Izvestiya: Mathematics, 2009, 73:3, 437–453

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024