RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2000 Volume 64, Issue 1, Pages 197–210 (Mi im279)

This article is cited in 2 papers

Abelian monopoles: the case of a positive-dimensional moduli space

N. A. Tyurin

Moscow State University of Transportation

Abstract: In this paper we consider (in the framework of the general Seiberg–Witten theory) the case when the moduli space of solutions of the Seiberg–Witten equations has positive even dimension. We describe a connection between the Seiberg–Witten invariants of a given manifold $X$ and those of the connected sum $Y=X \# d\overline{\mathbb{CP}}^2$ where $d=(1/2)\operatorname{v.dim}\mathcal M_{SW}$. We introduce the notion of a complex structure with degeneration (based on the connection between spinor geometry and complex geometry) and generalize the notion of a pseudoholomorphic curve to the case when the underlying manifold a priori has no almost complex structure.

MSC: 53C07

Received: 02.02.1999

DOI: 10.4213/im279


 English version:
Izvestiya: Mathematics, 2000, 64:1, 193–206

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025