RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2000 Volume 64, Issue 2, Pages 43–88 (Mi im284)

This article is cited in 4 papers

Some remarks on the $\ell$-adic regulator. IV

L. V. Kuz'min

Russian Research Centre "Kurchatov Institute"

Abstract: We continue to examine the bilinear form $U(K_n)\times U(K_n)\to\mathbb{Q}_\ell$, $(x,y)\to\operatorname{Sp}_{K_n/\mathbb{Q}_\ell}(\log x\cdot\log y)$ where $K_n$ runs through all intermediate subfields of the cyclotomic $\mathbb{Z}_\ell$-extension $K_\infty/K$, $K$ is an arbitrary finite extension of $\mathbb{Q}_\ell$, and $\log$ is the $\ell$-adic logarithm. We give applications to the weak conjecture on the $\ell$-adic regulator. In particular, we prove this conjecture for $\ell$-extensions of Abelian number fields.

MSC: 11S85, 11S25

Received: 23.02.1999

DOI: 10.4213/im284


 English version:
Izvestiya: Mathematics, 2000, 64:2, 265–310

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024