RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1995 Volume 59, Issue 4, Pages 9–14 (Mi im29)

Criteria for holomorphic completeness. II

V. D. Golovin


Abstract: It is proved that a complex space $X$ of finite dimension $d$ is holomorphically complete if and only if the following conditions hold:
1) for an arbitrary point $x_0\in X$ there exists analysis sets $M_n\subset\dots\subset M_1\subset M_0=X$ and holomorphic function $f_i\in\Gamma(M_{i-1};\mathscr O_{M_{i-1}})$, $i=1,\dots,n$, such that $M_i=\{x\in M_{i-1}:f_i(x)=0\}$, and $\mathscr O_{M_i}=\mathscr O_{M_{i-1}}/f_i\mathscr O_{M_{i-1}}\mid M_i$ for each $i=1,\dots,n$, and $x_0$ is an isolated point in $M_n$;
2) $H^k(X;\mathscr O_X)=0$, for $k=1,\dots,d-1$.

MSC: 32C99

Received: 08.04.1993


 English version:
Izvestiya: Mathematics, 1995, 59:4, 671–676

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025