RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2000 Volume 64, Issue 4, Pages 47–108 (Mi im295)

This article is cited in 37 papers

Asymptotics of any order for the eigenvalues and eigenfunctions of the Sturm–Liouville boundary-value problem on a segment with a summable potential

V. A. Vinokurov, V. A. Sadovnichiia

a M. V. Lomonosov Moscow State University

Abstract: For the Sturm–Liouville boundary-value problem on a segment we construct asymptotics for $s_n=\sqrt{\lambda_n}$, where $\lambda_n$ are the eigenvalues, and for the normalized eigenfunctions $y_n(x)$ of the form
$$ s_n=s_{n,m}(q)+\psi_{n,m}, \qquad y_n(x)=y_{n,m}(q,x)+\Delta y_{n,m}(x) $$
for any $m=0,1,2,\dots$, where $s_{n,m}(q)$ and $y_{n,m}(q,x)$ are expressed explicitly in terms of the potential $q(x)$. Under the assumption that $q(x)$ is a real summable function, the terms $\psi_{n,m}$ and $\Delta y_{n,m}(x)$ are $O\biggl(\dfrac1{n^{m+1}}\biggr)$ as $n\to\infty$.

MSC: 47E05, 34L99, 47A70, 34E99

Received: 24.12.1998

DOI: 10.4213/im295


 English version:
Izvestiya: Mathematics, 2000, 64:4, 695–754

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025