RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2000 Volume 64, Issue 4, Pages 141–162 (Mi im298)

This article is cited in 5 papers

On the Brauer group

S. G. Tankeev

Vladimir State University

Abstract: For an arithmetic model $X$ of a Fermat surface or a hyperkahler variety with Betti number $\operatorname{b}_2(V\otimes\bar k)>3$ over a purely imaginary number field $k$, we prove the finiteness of the $l$-components of $\operatorname{Br}'(X)$ for all primes $l\gg 0$. This yields a variant of a conjecture of M. Artin.
If $V$ is a smooth projective irregular surface over a number field $k$ and $V(k)\ne\varnothing$, then the $l$-primary component of $\operatorname{Br}(V)/{\operatorname{Br}(k)}$ is an infinite group for every prime $l$. Let $A^1\to M^1$ be the universal family of elliptic curves with a Jacobian structure of level $N\geqslant 3$ over a number field $k\supset\mathbb Q(e^{2\pi i/N})$. Assume that $M^1(k)\ne\varnothing$. If $V$ is a smooth projective compactification of the surface $A^1$, then the $l$-primary component of $\operatorname{Br}(V)/{\operatorname{Br}(\overline M^1)}$ is a finite group for each sufficiently large prime $l$.

MSC: 14J20

Received: 22.12.1998

DOI: 10.4213/im298


 English version:
Izvestiya: Mathematics, 2000, 64:4, 787–806

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025