RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2001 Volume 65, Issue 2, Pages 27–80 (Mi im327)

This article is cited in 28 papers

Entropy solutions of the Dirichlet problem for a class of non-linear elliptic fourth-order equations with right-hand sides in $L^1$

A. A. Kovalevsky

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences

Abstract: In this paper we introduce and study the notion of an entropy solution of the Dirichlet problem for a class of non-linear elliptic fourth-order equations whose right-hand sides admit arbitrary growth with respect to the variable corresponding to the unknown function and belong to the space $L^1$ for each fixed value of this variable. We prove the existence and uniqueness of an entropy solution. We establish the existence of so-called $H$-solutions and $W$-solutions of the problem and prove that the entropy solutions belong to certain Sobolev spaces.

MSC: 35J65, 35J30, 35D05

Received: 09.09.1999

DOI: 10.4213/im327


 English version:
Izvestiya: Mathematics, 2001, 65:2, 231–283

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025