RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2001 Volume 65, Issue 2, Pages 155–186 (Mi im330)

This article is cited in 7 papers

On the Brauer group of an arithmetic scheme

S. G. Tankeev

Vladimir State University

Abstract: For an Enriques surface $V$ over a number field $k$ with a $k$-rational point we prove that the $l$-component of $\operatorname{Br}(V)/{\operatorname{Br}(k)}$ is finite if and only if $l\ne 2$. For a regular projective smooth variety satisfying the Tate conjecture for divisors over a number field, we find a simple criterion for the finiteness of the $l$-component of $\operatorname{Br}'(V)/{\operatorname{Br}(k)}$. Moreover, for an arithmetic model $X$ of $V$ we prove a variant of Artin's conjecture on the finiteness of the Brauer group of $X$. Applications to the finiteness of the $l$-components of Shafarevich–Tate groups are given.

MSC: 14F22

Received: 01.02.2000

DOI: 10.4213/im330


 English version:
Izvestiya: Mathematics, 2001, 65:2, 357–388

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025