RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2001 Volume 65, Issue 3, Pages 3–14 (Mi im333)

This article is cited in 12 papers

On an analogue of Hardy's inequality for the Walsh–Fourier

B. I. Golubov

Moscow Engineering Physics Institute (State University)

Abstract: According to Hardy's well-known inequality, the $l_1$-norm of a function in the Hardy space $H(T)$ consisting of $2\pi$-periodic functions serves as an upper estimate for the $l_1$-norm of the sequence of Fourier coefficients of the integral of the function. In this paper, the dyadic Hardy space $H(\mathbb R_+)$ is introduced and an analogue of this estimate is proved for the Walsh–Fourier transform.

MSC: 2605, 3505, 42C05, 42C10, 43A75, 42C10

Received: 17.05.2000

DOI: 10.4213/im333


 English version:
Izvestiya: Mathematics, 2001, 65:3, 425–435

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025