RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2001 Volume 65, Issue 3, Pages 15–50 (Mi im334)

This article is cited in 21 papers

Abelian Lagrangian algebraic geometry

A. L. Gorodentseva, A. N. Tyurinb

a Independent University of Moscow
b Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: This paper begins a detailed exposition of a geometric approach to quantization, which is presented in a series of preprints ([23], [24], …) and which combines the methods of algebraic and Lagrangian geometry. Given a prequantization $U (1)$-bundle $L$ on a symplectic manifold $M$, we introduce an infinite-dimensional Kähler manifold $\mathscr P^{\mathrm{hw}}$ of half-weighted Planck cycles. With every Kähler polarization on $M$ we canonically associate a map $\mathscr P^{\mathrm{hw}}\overset{\gamma}{\to}H^{0}(M,L)$ to the space of holomorphic sections of the prequantization bundle. We show that this map has a constant Kähler angle and its “twisting” to a holomorphic map is the Borthwick–Paul–Uribe map. The simplest non-trivial illustration of all these constructions is provided by the theory of Legendrian knots in $S^3$.

MSC: 53D50, 53C15

Received: 15.08.2000

DOI: 10.4213/im334


 English version:
Izvestiya: Mathematics, 2001, 65:3, 437–467

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025