RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2001 Volume 65, Issue 3, Pages 67–84 (Mi im336)

This article is cited in 6 papers

The buffer phenomenon in a mathematical model of the van der Pol self-oscillator with distributed parameters

A. Yu. Kolesova, N. Kh. Rozovb

a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University

Abstract: We establish that a mathematical model of the distributed van der Pol self-oscillator, which is a non-linear boundary-value problem of hyperbolic type, exhibits the buffer phenomenon, which means that the system can have any given number of stable cycles if its parameters are properly chosen.

MSC: 35K50, 35B25, 35B10, 35C20

Received: 26.04.2000

DOI: 10.4213/im336


 English version:
Izvestiya: Mathematics, 2001, 65:3, 485–501

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024