RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2001 Volume 65, Issue 3, Pages 175–192 (Mi im341)

This article is cited in 1 paper

Analogues of the Hausdorff–Young and Hardy–Littlewood theorems

T. V. Rodionov

M. V. Lomonosov Moscow State University

Abstract: We study expansions of functions in the space $L^p$ with respect to systems similar to orthogonal ones. We find estimates for the coefficients and sufficient conditions on them under which the corresponding expansions converge in $L^p$. These results are analogues of the well-known Hausdorff–Young–Riesz and Hardy–Littlewood–Paley theorems in the theory of trigonometric and orthogonal series. It is shown that the resulting estimates are more exact than the classical ones even in the case of orthogonal systems.

MSC: 42C15, 43A40, 43A32, 47A63

Received: 02.03.2000

DOI: 10.4213/im341


 English version:
Izvestiya: Mathematics, 2001, 65:3, 589–606

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025