RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2001 Volume 65, Issue 3, Pages 193–200 (Mi im342)

This article is cited in 9 papers

$A$-integrable martingale sequences and Walsh series

V. A. Skvortsov

M. V. Lomonosov Moscow State University

Abstract: A sufficient condition for a Walsh series converging to an $A$-integrable function $f$ to be the $A$-Fourier's series of $f$ is stated in terms of uniform $A$-integrability of a martingale subsequence of partial sums of the Walsh series. Moreover, the existence is proved of a Walsh series that converges almost everywhere to an $A$-integrable function and is not the $A$-Fourier series of its sum.

MSC: 40A05, 42C10, 43A75, 42C25, 60A05, 60G46

Received: 25.05.2000

DOI: 10.4213/im342


 English version:
Izvestiya: Mathematics, 2001, 65:3, 607–615

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025