RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2001 Volume 65, Issue 4, Pages 67–88 (Mi im348)

A priori estimates for the solution of the first boundary-value problem for a class of second-order parabolic systems

L. I. Kamynin, B. N. Khimchenko


Abstract: We consider two classes of second-order parabolic matrix-vector systems (with solutions $u\in M_{m\times 1}$, $m\geqslant 2$) that can be reduced to a single second-order parabolic equation for a scalar function $v=\langle p,u\rangle$, where $p\in M_{m\times 1}$ is a fixed stochastic constant vector. We consider the first boundary-value problem for a scalar second-order parabolic equation (with unbounded coefficients) in a domain unbounded with respect to $x$ under the assumption of strong absorption at infinity. We obtain an a priori estimate for solutions of the first boundary-value problem in the generalized Tikhonov–Täcklind classes. (The problem under investigation has at most one solution in these classes.)

MSC: 35K50, 35B50, 35K20, 35B45, 35K15, 35A05, 35B05

Received: 27.09.1996

DOI: 10.4213/im348


 English version:
Izvestiya: Mathematics, 2001, 65:4, 705–726

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025