RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2001 Volume 65, Issue 5, Pages 73–90 (Mi im357)

This article is cited in 4 papers

Best quadrature formulae on Hardy–Sobolev classes

K. Yu. Osipenko

Moscow State Aviation Technological University

Abstract: For functions in the Hardy–Sobolev class $H_\infty^r$, which is defined as the set of functions analytic in the unit disc and satisfying $f^{(r)}(z)|\leqslant 1$, we construct best quadrature formulae that use the values of the functions and their derivatives on a given system of points in the interval $(-1,1)$. For the periodic Hardy–Sobolev class $H_{\infty,\beta}^r$, which is defined as the set of $2\pi$-periodic functions analytic in the strip $|\operatorname{Im}z|<\beta$ and satisfying $|f^{(r)}(z)|\leqslant 1$, we prove that the rectangle rule is the best for an equidistant system of points, and we calculate the error in this formula. We construct best quadrature formulae on the class $H_{p,\beta}$, which is defined similarly to $H_{\infty,\beta}$, except that the boundary values of functions are taken in the $L_p$-norm. We also construct an optimal method for recovering functions in $H_p^r$ from the Taylor information $f(0),f'(0),\dots,f^{(n+r-1)}(0)$.

MSC: 41A55

Received: 23.11.2000

DOI: 10.4213/im357


 English version:
Izvestiya: Mathematics, 2001, 65:5, 923–939

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024