RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2001 Volume 65, Issue 5, Pages 129–152 (Mi im359)

This article is cited in 10 papers

Finite-dimensional dynamics on attractors of non-linear parabolic equations

A. V. Romanov

All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences

Abstract: We show that one-dimensional semilinear second-order parabolic equations have finite-dimensional dynamics on attractors. In particular, this is true for reaction-diffusion equations with convection on $(0,1)$.
We obtain new topological criteria for a class of dissipative equations of parabolic type in Banach spaces to have finite-dimensional dynamics on invariant compact sets. The dynamics of these equations on an attractor $\mathcal A$ is finite-dimensional (can be described by an ordinary differential equation) if $\mathcal A$ can be embedded in a finite-dimensional $C^1$-submanifold of the phase space.

MSC: 37L30, 35B41, 35K57, 35K55, 35B40, 34G20, 35G10, 35K25

Received: 20.07.2000

DOI: 10.4213/im359


 English version:
Izvestiya: Mathematics, 2001, 65:5, 977–1001

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025