RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2002 Volume 66, Issue 2, Pages 81–148 (Mi im380)

This article is cited in 117 papers

Homogenization of elasticity problems on singular structures

V. V. Zhikov

Vladimir State Pedagogical University

Abstract: We consider homogenization theory on periodic networks, junctions and more general singular objects. We show that the homogenized problem typically has a “non-classical” character. This fact is a distinctive feature of homogenization of elasticity problems in contrast to scalar problems.
We investigate the properties of Sobolev spaces for various singular structures, prove a non-classical homogenization principle for singular periodic structures of general type and describe a “scaling effect” for model problems with two small geometrical parameters.

UDC: 517.9

MSC: 35B27

Received: 23.11.2000
Revised: 10.09.2001

DOI: 10.4213/im380


 English version:
Izvestiya: Mathematics, 2002, 66:2, 299–365

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025