RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2002 Volume 66, Issue 2, Pages 173–204 (Mi im383)

This article is cited in 5 papers

The arithmetic and geometry of a generic hypersurface section

S. G. Tankeev

Vladimir State University

Abstract: If the Hodge conjecture (respectively the Tate conjecture or the Mumford–Tate conjecture) holds for a smooth projective variety $X$ over a field $k$ of characteristic zero, then it holds for a generic member $X_t$ of a $k$-rational Lefschetz pencil of hypersurface sections of $X$ of sufficiently high degree. The Mumford–Tate conjecture is true for the Hodge $\mathbb{Q}$-structure associated with vanishing cycles on $X_t$. If the transcendental part of the second cohomology of a K3 surface $S$ over a number field is an absolutely irreducible module under the action of the Hodge group $\operatorname{Hg}(S)$, then the punctual Hilbert scheme $\operatorname{Hilb}^2(S)$ is a hyperkähler fourfold satisfying the conjectures of Hodge, Tate and Mumford–Tate.

UDC: 512.6

MSC: 14K15

Received: 31.10.2000

DOI: 10.4213/im383


 English version:
Izvestiya: Mathematics, 2002, 66:2, 393–424

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024