RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1995 Volume 59, Issue 5, Pages 19–40 (Mi im39)

This article is cited in 10 papers

A description of characteristic classes of real submanifolds in complex manifolds via RC-singularities

A. V. Domrin


Abstract: Let $X$ be a complex manifold, $M\subset X$ a (closed, orient) real submanifold, and $S\subset M$ the set of RC-singular points of $M$. We study the connection between the global topological characteristics of $S$ and the topology of $M$ and $X$. For the case of discrete $S$ we introduce a notion of an isolate RC-singular point and obtain a formula expressing the sun of indices over $S$ in terms of the Chern classes of $X$ and the Pontryagin classes of $M$ and of the normal bundle to $M$ in $X$ (Theorem 1). In the general case we express the Poincare dual to $S$ (Theorem 2) and the Poincare duals to some cycles carried by subsets of $S$ (Theorem 3) in a similar way.

MSC: 57R20

Received: 12.05.1995


 English version:
Izvestiya: Mathematics, 1995, 59:5, 899–918

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025