RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2002 Volume 66, Issue 4, Pages 3–26 (Mi im393)

This article is cited in 3 papers

The halo problem in the theory of differentiation of integrals

E. I. Berezhnoia, A. V. Novikovb

a P. G. Demidov Yaroslavl State University
b Institute for Physics of Microstructures, Russian Academy of Sciences

Abstract: Let there be given a Lorentz space and an Orlicz space with equal fundamental functions. We construct a differential basis that differentiates the integrals of functions belonging to the Lorentz space, but does not differentiate the integral of some function belonging to the Orlicz space. Such bases enable us to obtain a negative solution of the so-called halo problem for $p\in(1,\infty)$. Morillon [1], Russian p. 186, proved that this problem has a positive solution in the case when $p=1$.

UDC: 517.5

MSC: 46E30, 46B15, 42B25

Received: 07.05.2001

DOI: 10.4213/im393


 English version:
Izvestiya: Mathematics, 2002, 66:4, 659–681

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025