RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2002 Volume 66, Issue 5, Pages 183–192 (Mi im405)

This article is cited in 2 papers

On the closures of orbits of fourth order matrix pencils

D. D. Pervouchine


Abstract: We state a simple criterion for nilpotency of an $n\times n$ matrix pencil with respect to the action of $\operatorname{SL}_n(\mathbb C)\times \operatorname{SL}_n(\mathbb C) \times\operatorname{SL}_2(\mathbb C)$. We explicitly classify the orbits of matrix pencils for $n=4$ and describe the hierarchy of closures of nilpotent orbits. We also prove that the algebra of invariants of the action of $\operatorname{SL}_n(\mathbb C)\times \operatorname{SL}_n(\mathbb C)\times\operatorname{SL}_2(\mathbb C)$ on $\mathbb C_n\otimes\mathbb C_n\otimes\mathbb C_2$ is naturally isomorphic to the algebra of invariants of binary forms of degree $n$ with respect to the action of $\operatorname{SL}_2(\mathbb C)$.

UDC: 512.643+512.813+512.815

MSC: 14L30, 15A72, 20G05

Received: 27.03.2001
Revised: 08.05.2002

DOI: 10.4213/im405


 English version:
Izvestiya: Mathematics, 2002, 66:5, 1047–1055

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024