RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2010 Volume 74, Issue 4, Pages 157–188 (Mi im4055)

This article is cited in 6 papers

Quasi-measures, Hausdorff $p$-measures and Walsh and Haar series

M. G. Plotnikov

Vologda State Academy of Milk Industry

Abstract: We study the classes of multiple Haar and Walsh series with at most polynomial growth of the rectangular partial sums. In terms of the Hausdorff $p$-measure, we find a sufficient condition (a criterion for the multiple Haar series) for a given set to be a $U$-set for series in the given class. We solve the recovery problem for the coefficients of the series in this class converging outside a uniqueness set. A Bari-type theorem is proved for the relative uniqueness sets for multiple Haar series. For one-dimensional Haar series, we get a criterion for a given set to be a $U$-set under certain assumptions that generalize the Arutyunyan–Talalyan conditions. We study the problem of describing those Cantor-type sets that are relative uniqueness sets for Haar series.

Keywords: dyadic group, Haar series, Walsh series, uniqueness set.

UDC: 517.518.3

MSC: 42C25, 42C10, 42B05

Received: 21.10.2008

DOI: 10.4213/im4055


 English version:
Izvestiya: Mathematics, 2010, 74:4, 819–848

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025