RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2011 Volume 75, Issue 3, Pages 147–160 (Mi im4102)

This article is cited in 2 papers

On the number of components of a three-dimensional maximal intersection of three real quadrics

V. A. Krasnov

P. G. Demidov Yaroslavl State University

Abstract: We consider non-singular intersections of three real five-dimensional quadrics. For brevity they are referred to as real three-dimensional triquadrics. We prove the existence of real three-dimensional $M$-triquadrics with $k$ components, where $k$ is any integer in the range $1\leqslant k\leqslant 14$.

Keywords: triquadrics, maximal varieties, spectral curve, theta-characteristics, index function.

UDC: 512.7

MSC: 14P25, 14N25, 14J30

Received: 26.03.2009

DOI: 10.4213/im4102


 English version:
Izvestiya: Mathematics, 2011, 75:3, 589–602

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025