RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2010 Volume 74, Issue 6, Pages 55–106 (Mi im4107)

This article is cited in 9 papers

Algebra and quantum geometry of multifrequency resonance

M. V. Karasev, E. M. Novikova

Moscow State Institute of Electronics and Mathematics

Abstract: The algebra of symmetries of a quantum resonance oscillator in the case of three or more frequencies is described using a finite (minimal) basis of generators and polynomial relations. For this algebra, we construct quantum leaves with a complex structure (an analogue of classical symplectic leaves) and a quantum Kähler 2-form, a reproducing measure, and also the corresponding irreducible representations and coherent states.

Keywords: frequency resonance, algebra of symmetries, non-linear commutation relations, quantum Kähler forms, coherent states.

UDC: 517.986+517.958

MSC: 81S10, 53C55, 81Q05, 81R05, 81R30

Received: 22.04.2009
Revised: 28.08.2009

DOI: 10.4213/im4107


 English version:
Izvestiya: Mathematics, 2010, 74:6, 1155–1204

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025