RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2003 Volume 67, Issue 1, Pages 33–58 (Mi im417)

This article is cited in 7 papers

A dyadic analogue of Wiener's Tauberian theorem and some related questions

B. I. Golubov

Moscow Engineering Physics Institute (State University)

Abstract: A dyadic analogue is proved of Wiener's Tauberian convolution theorem for two functions. Closedness criteria are established for the linear span of the set of binary shifts $\{f(\,\circ\oplus y)\colon y\geqslant 0\}$ for a given function $f\in L(\mathbb R_+)$ or $f\in L^2(\mathbb R_+)$. A consequence of these criteria is that the linear span of the set of binary shifts $\{f(\,\circ\oplus y)\colon 0\leqslant y\leqslant 1\}$ for a given function $f\in L([0,1))$ ($f\in L^2([0,1))$) is dense in the space $L([0,1))$ ($L^2([0,1))$) if and only if all the Fourier coefficients of $f$ with respect to the orthonormalized Walsh system on $[0,1)$ are non-zero.

UDC: 517.5

MSC: 11M45, 30B50, 40E05, 42A32, 42A38, 42C10, 42C10, 44A10, 47A10

Received: 15.03.2002

DOI: 10.4213/im417


 English version:
Izvestiya: Mathematics, 2003, 67:1, 29–53

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025