RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2011 Volume 75, Issue 2, Pages 19–34 (Mi im4205)

This article is cited in 4 papers

The amenability of the substitution group of formal power series

I. K. Babenkoa, S. A. Bogatyib

a Institut de Mathématiques et de Modélisation de Montpellier
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We study the amenability property for the group $\mathcal{J}(\mathbf{k})$ of formal power series in one variable with coefficients in a commutative ring $\mathbf{k}$ with identity. We show that there exists an invariant mean on the space $C_{\mathrm{u}}^*(\mathcal{J}(\mathbf{k}))$ of uniformly continuous bounded functions on this group. This is equivalent to the fact that every continuous action of $\mathcal{J}(\mathbf{k})$ on every compact space has an invariant probability measure.

Keywords: topological group, group action, invariant mean.

UDC: 512.546+517.987.5

MSC: 20E18, 22A10, 43A07, 46E15

Received: 20.02.2009
Revised: 04.03.2010

DOI: 10.4213/im4205


 English version:
Izvestiya: Mathematics, 2011, 75:2, 239–252

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025