RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2003 Volume 67, Issue 1, Pages 131–158 (Mi im421)

This article is cited in 8 papers

Symplectic structure on a moduli space of sheaves on the cubic fourfold

D. G. Markushevich, A. S. Tikhomirov

Yaroslavl State Pedagogical University named after K. D. Ushinsky

Abstract: We construct a 10-dimensional symplectic moduli space of torsion sheaves on the cubic 4-fold in the 5-dimensional projective space. It parametrizes the stable rank 2 vector bundles on hyperplane sections of the cubic 4-fold which are obtained by the Serre construction from normal elliptic quintics. The natural projection of this moduli space onto the dual projective 5-space is a Lagrangian fibration. The symplectic structure is closely related (and conjecturally equal) to the quasi-symplectic structure induced by the Yoneda pairing on the moduli space.

UDC: 517.2

MSC: 14D20, 14J60, 14F05

Received: 10.09.2001

DOI: 10.4213/im421


 English version:
Izvestiya: Mathematics, 2003, 67:1, 121–144

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025