RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2003 Volume 67, Issue 1, Pages 177–198 (Mi im423)

This article is cited in 3 papers

Tangential boundary values of Laplace transforms. Applications to Muntz–Szasz type approximation

A. M. Sedletskii

M. V. Lomonosov Moscow State University

Abstract: We consider the Laplace transforms (LT) of functions in $L^q(\mathbb R_+)$, $1<q\leqslant 2$, with a slowly varying weight. We prove that if the weight satisfies certain conditions, then each LT of this class has tangential boundary values almost everywhere on the imaginary axis, and the structure of the corresponding neighbourhoods depends on the weight only. This result is applied to distinguish a wide class of weighted $L^p$ spaces on the half-line such that the Szasz condition is not necessary for the completeness of the system $\exp(-\lambda_n t)$ in these spaces.

UDC: 517.5

MSC: 30D40, 41A30

Received: 28.02.2002

DOI: 10.4213/im423


 English version:
Izvestiya: Mathematics, 2003, 67:1, 161–181

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024