RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2003 Volume 67, Issue 3, Pages 79–118 (Mi im436)

This article is cited in 28 papers

On braid monodromy factorizations

V. M. Kharlamova, Vik. S. Kulikovb

a University Louis Pasteur
b Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: We introduce and develop a language of semigroups over the braid groups to study the braid monodromy factorizations (bmf's) of plane algebraic curves and other related objects. As an application, we give a new proof of Orevkov's theorem on the realization of bmf's over a disc by algebraic curves and show that the complexity of such a realization cannot be bounded in terms of the types of factors of the bmf. We also prove that the type of a bmf distinguishes Hurwitz curves with singularities of inseparable type up to $H$-isotopy and $J$-holomorphic cuspidal curves in $\mathbb{CP}^2$ up to symplectic isotopy.

UDC: 512.772.1+514.756.44

MSC: 14E20

Received: 23.01.2003

DOI: 10.4213/im436


 English version:
Izvestiya: Mathematics, 2003, 67:3, 499–534

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024