RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2003 Volume 67, Issue 5, Pages 3–34 (Mi im449)

This article is cited in 2 papers

Interpolation by symmetric functions and alternating higher Bruhat orders

G. G. Ilyuta


Abstract: We study interpolation by Grassmannian Schubert polynomials (Schur functions). We prove versions of the Sturmfels–Zelevinsky formula for the product of the maximal minors of rectangular matrices corresponding to elementary symmetric functions and Schur functions, and deduce from them generalizations of formulae for the Cauchy–Vandermonde determinant and Cauchy's formula for Schur functions. We define generalizations of higher Bruhat orders whose elements encode connected components of configuration spaces, and also generalizations of discriminantal Manin–Schechtman arrangements.

UDC: 519.651

MSC: 41A05, 41A63, 13F99, 58K20, 06A06, 58K40, 05E05, 12H10, 55R80, 58C25, 58K99, 32S25

Received: 26.12.2001

DOI: 10.4213/im449


 English version:
Izvestiya: Mathematics, 2003, 67:5, 849–880

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025