RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2003 Volume 67, Issue 5, Pages 155–176 (Mi im455)

This article is cited in 7 papers

On the Brauer group of an arithmetic scheme. II

S. G. Tankeev

Vladimir State University

Abstract: Let $\pi\colon X\to\operatorname{Spec}A$ be an arithmetic model of a regular smooth projective variety $V$ over a number field $k$. We prove the finiteness of $H^1(\operatorname{Spec} A,R^1\pi_\ast\operatorname{G}_m)$ under the assumption that $\pi_\ast\operatorname{G}_m=\operatorname{G}_m$ for the étale topology. (This assumption holds automatically if all geometric fibres of $\pi$ are reduced and connected.) If a prime $l$ does not divide $\operatorname{Card}([\operatorname{NS}(V\otimes \bar k)]_{\mathrm{tors}})$, $V(k)\ne\varnothing$, and the Tate conjecture holds for divisors on $V$, then the $l$-primary component $\operatorname{Br}'(X)(l)$ is finite. We also study finiteness properties of the Brauer group of a Calabi–Yau variety $V$ of dimension $\geqslant 2$ over a number field.

UDC: 512.6

MSC: 14F22

Received: 24.04.2002

DOI: 10.4213/im455


 English version:
Izvestiya: Mathematics, 2003, 67:5, 1007–1029

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024