RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2003 Volume 67, Issue 6, Pages 111–136 (Mi im461)

This article is cited in 43 papers

Singular symmetric functionals and Banach limits with additional invariance properties

P. G. Dodds, B. de Pagter, A. A. Sedaev, E. M. Semenov, F. A. Sukochev


Abstract: For symmetric spaces of measurable functions on the real half-line, we study the problem of existence of positive linear functionals monotone with respect to the Hardy–Littlewood semi-ordering, the so-called symmetric functionals. Two new wide classes of symmetric spaces are constructed which are distinct from Marcinkiewicz spaces and for which the set of symmetric functionals is non-empty. We consider a new construction of singular symmetric functionals based on the translation-invariance of Banach limits defined on the space of bounded sequences. We prove the existence of Banach limits invariant under the action of the Hardy operator and all dilation operators. This result is used to establish the stability of the new construction of singular symmetric functionals for an important class of generating sequences.

UDC: 517.51

MSC: 30H05, 32E25, 46A40, 46B10, 46B42, 46E30, 46J10, 46L50

Received: 11.10.2002

DOI: 10.4213/im461


 English version:
Izvestiya: Mathematics, 2003, 67:6, 1187–1212

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025