RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2004 Volume 68, Issue 3, Pages 91–114 (Mi im487)

This article is cited in 11 papers

Regular homotopy of Hurwitz curves

Vik. S. Kulikova, D. Aurouxb, V. V. Shevchishinc

a Steklov Mathematical Institute, Russian Academy of Sciences
b Massachusetts Institute of Technology
c Ruhr-Universität Bochum

Abstract: We prove that any two irreducible cuspidal Hurwitz curves $C_0$ and $C_1$ (or, more generally, two curves with $A$-type singularities) in the Hirzebruch surface $\boldsymbol F_N$ with the same homology classes and sets of singularities are regular homotopic. Moreover, they are symplectically regular homotopic if $C_0$ and $C_1$ are symplectic with respect to a compatible symplectic form.

UDC: 512.722.1+514.756.44

MSC: 32Q65, 53D05, 58D27, 14H10

Received: 13.01.2004

DOI: 10.4213/im487


 English version:
Izvestiya: Mathematics, 2004, 68:3, 521–542

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024