RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1995 Volume 59, Issue 5, Pages 203–224 (Mi im49)

This article is cited in 5 papers

On the structure of residue currents and functionals orthogonal to ideals in the space of holomorphic functions

V. M. Trutnev, A. K. Tsikh

Krasnoyarsk State University

Abstract: This article investigates residues associated with holomorphic mappings $f=(f_1,\dots,f_p)\colon X\to\mathbb C^p$ defined on a complex space $X$. By means of a new definition of principal value of a residue, it sharpens results of Coleff, Herrera, and Dolbeault concerning the structure of residues. It establishes a connection between residues and functionals in $\mathcal O'(X)$ orthogonal to the ideal $\langle f_1,\dots,f_p\rangle\subset\mathcal O(X)$. Using these results on residues and functionals, a formula is derived for the exponential representation for elements of invariant subspaces and for the solution of homogeneous convolution equations.

MSC: 32C30, 32A27

Received: 24.01.1995


 English version:
Izvestiya: Mathematics, 1995, 59:5, 1083–1102

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024