RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2004 Volume 68, Issue 5, Pages 3–12 (Mi im501)

This article is cited in 2 papers

On the coincidence of types of a real $AW^*$-algebra and its complexification

S. A. Albeverioa, Sh. A. Ayupovb, A. Kh. Abduvaitovc

a University of Bonn, Institute for Applied Mathematics
b Romanovskii Mathematical Institute of the National Academy of Sciences of Uzbekistan
c National University of Uzbekistan named after M. Ulugbek

Abstract: We consider real $AW^*$-algebras, that is, Kaplansky algebras over the field of real numbers. As in the case of complex von Neumann algebras and complex $AW^*$-algebras, real $AW^*$-algebras are classified in terms of types $\mathrm{I}_{\mathrm{fin}}$, $\mathrm{I}_\infty$, $\mathrm{II}_1$, $\mathrm{II}_\infty$, and $\mathrm{III}$. We prove that if the complexification $M=A+iA$ of a real $AW^*$-algebra A also is an $AW^*$-algebra, then the types of $A$ and $M$ coincide.

MSC: 46L05, 46L10

Received: 07.06.2003

DOI: 10.4213/im501


 English version:
Izvestiya: Mathematics, 2004, 68:5, 851–860

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025