RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2004 Volume 68, Issue 5, Pages 213–224 (Mi im508)

This article is cited in 5 papers

A generalization of the Funk–Hecke theorem to the case of hyperbolic spaces

T. V. Shtepina


Abstract: The well-known Funk–Hecke theorem states that for integral operators whose kernels depend only on the distance between points in spherical geometry and where the integral is taken over the surface of a hypersphere, every surface spherical harmonic is an eigenvector. In this paper we extend this theorem to the case of non-compact Lobachevsky spaces. We compute the corresponding eigenvalue in some physically important cases.

UDC: 515.12

MSC: 42A38, 42B10, 35P05, 47F05, 35J05

Received: 28.11.2003

DOI: 10.4213/im508


 English version:
Izvestiya: Mathematics, 2004, 68:5, 1051–1061

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024